Genetic analysis of adenohypophysis formation in zebrafish.
نویسندگان
چکیده
The adenohypophysis consists of at least six different cell types, somatotropes, lactotropes, thyrotropes, melanotropes, corticotropes, and gonadotropes. In mouse, cloning of spontaneous mutations and gene targeting has revealed multiple genes required for different steps of adenohypophysis development. Here, we report the results of a systematic search for genes required for adenohypophysis formation and patterning in zebrafish. By screening F3 offspring of N-ethyl-N-nitrosourea-mutagenized founder fish, we isolated eleven mutants with absent or reduced expression of GH, the product of somatotropes, but a normally developing hypothalamus. Of such mutants, eight were further analyzed and mapped. They define four genes essential for different steps of adenohypophysis development. Two of them, lia and pia, affect the entire adenohypophysis, whereas the other two are required for a subset of adenohypophyseal cell types only. The third gene is zebrafish pit1 and is required for lactotropes, thyrotropes, and somatotropes, similar to its mouse ortholog, whereas the fourth, aal, is required for corticotropes, melanotropes, thyrotropes, and somatotropes, but not lactotropes. In conclusion, the isolated zebrafish mutants confirm principles of adenohypophysis development revealed in mouse, thereby demonstrating the high degree of molecular and mechanistic conservation among the different vertebrate species. In addition, they point to thus far unknown features of adenohypophysis development, such as the existence of a new lineage of pituitary cells, which partially overlaps with the Pit1 lineage. Positional cloning of the lia, pia, and aal genes might reveal novel regulators of vertebrate pituitary development.
منابع مشابه
Identification of the first Transgenic Aquatic Animal in Iran by PCR-Based Method and Protein Analysis
In the recent years, there is evidence of training a red type of zebrafish which differs from wild-type in body color. There is not any document how it reaches to the ornamental fish farms of Iran but at first, it was a doubt it belongs to a morphotype or genetic modification (GM). First of all, a set primer was designed to validate zebrafish species. Mitochondrial 16srDNA was selected and ampl...
متن کاملGraded hedgehog and fibroblast growth factor signaling independently regulate pituitary cell fates and help establish the pars distalis and pars intermedia of the zebrafish adenohypophysis.
The vertebrate adenohypophysis forms as a placode at the anterior margin of the neural plate, requiring both hedgehog (Hh) and fibroblast growth factor (Fgf) mediated cell-cell signaling for induction and survival of endocrine cell types. Using small molecule inhibitors to modulate signaling levels during zebrafish development we show that graded Hh and Fgf signaling independently help establis...
متن کاملZebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism.
The Pou domain transcription factor Pit-1 is required for lineage determination and cellular commitment processes during mammalian adenohypophysis development. Here we report the cloning and mutational analysis of a pit1 homolog from zebrafish. Compared with mouse, zebrafish pit1 starts to be expressed at a much earlier stage of adenohypophysis development. However, as in the mouse, expression ...
متن کاملZebrafish mutations in Gli-mediated hedgehog signaling lead to lens transdifferentiation from the adenohypophysis anlage
It is known that the earliest lens marker delta-crystallin is expressed abundantly in Rathke's pouch of the chicken, suggesting a close relationship between the cell states of the adenohypophysis (pituitary) anlage and the early lens. We show here that the zebrafish midline mutants you-too (yot) and iguana (igu) develop lenses from the adenohypophysis anlage. The early adenohypophysis anlage of...
متن کاملReview of the Ethical and Technical Principles of Working with Zebrafish as a Species of the Biological Model in Medical Science Studies
The Zebrafish is a preeminent model organism that, with its most prominent features, has expanded the boundaries of science in many disciplines. Characteristics of this small freshwater fish, with the help of biologists, showed that it has a highly comparable genetic with mammals such as mice and rats. For example, the emergence of new and efficient methods for duplicating and editing the genom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 18 5 شماره
صفحات -
تاریخ انتشار 2004